On a Conjecture of Serre on Abelian Threefolds

نویسنده

  • GILLES LACHAUD
چکیده

A conjecture of Serre predicts a precise from of Torelli Theorem for genus 3 curves, namely, an indecomposable principally polarized abelian threefold is a Jacobian if and only if some specific invariant is a square. We study here a three dimensional family of such threefolds, introduced by Howe, Leprevost and Poonen. By a new formulation, we link their results to the conjecture of Serre. Then, we recover a formula of Klein related to the conjecture for complex threefolds. In this case the invariant is a modular form of weight 18, and the conjecture is proved using theta functions identities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid Calabi-yau Threefolds over Q Are Modular: a Footnote to Serre

The proof of Serre’s conjecture on Galois representations over finite fields allows us to show, using a trick due to Serre himself, that all rigid Calabi-Yau threefolds defined over Q are modular. The safest general characterization of the European philosophical tradition is that it consists of a series of footnotes to Plato. Alfred North Whitehead,

متن کامل

Vector Bundles and Monads on Abelian Threefolds

Using the Serre construction, we give examples of stable rank 2 vector bundles on principally polarized abelian threefolds (X,Θ) with Picard number 1. The Chern classes (c1, c2) of these examples realize roughly one half of the classes that are a priori allowed by the Bogomolov inequality and Riemann-Roch (the latter gives a certain divisibility condition). In the case of even c1, we study defo...

متن کامل

On the modularity of rigid Calabi-Yau threefolds: Epilogue

In a recent preprint of F. Gouvea and N. Yui (see arxiv.org/abs/0902.1466) a detailed account is given of a patching argument due to Serre that proves that the modularity of all rigid Calabi-Yau threefolds defined over Q follows from Serre’s modularity conjecture. In this note (a letter to N. Yui) we give an alternative proof of this implication. The main difference with Serre’s argument is tha...

متن کامل

. A G ] 1 4 Ju n 20 04 Some results about the projective normality of abelian varieties . Luis Fuentes Garćıa

We reduce the problem of the projective normality of polarized abelian varieties to check the rank of very explicit matrices. This allow us to prove some results on normal generation of primitive line bundles on abelian threefolds and fourfolds. We also give two situations where the projective normality always fails. Finally we make some conjecture. Mathematics Subject Classifications (2000): P...

متن کامل

S ep 2 00 0 THE MODULARITY CONJECTURE FOR RIGID CALABI – YAU THREEFOLDS OVER

: We formulate the modularity conjecture for rigid Calabi–Yau threefolds defined over the field Q of rational numbers. We establish the modularity for the rigid Calabi–Yau threefold arising from the root lattice A3. Our proof is based on geometric analysis. 1. The L–series of Calabi–Yau threefolds Let Q be the field of rational numbers, and let Q̄ be its algebraic closure with Galois group G := ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008